Complement receptor 1 and the molecular pathogenesis of malaria
نویسنده
چکیده
Malaria is a pathogenic infection caused by protozoa of the genus plasmodium. It is mainly confined to sub-Saharan Africa, Asia and South America. This disease claims the life of over 1.5 to 2.7 million people per year. Owing to such a high incidence of malarial infections, there is an urgent need for the development of suitable vaccines. For the development of ideal vaccines, it is essential to understand the molecular mechanisms of malarial pathogenesis and the factors that lead to malaria infection. Genetic factors have been proposed to play an important role in malarial pathogenesis. Complement receptor 1 (CR1) is an important host red blood cell protein involved in interaction with malarial parasite. Various polymorphic forms of CR1 have been found to be involved in conferring protection or increasing susceptibility to malaria infections. Low-density allele (L) of CR1 gave contradictory results in different set of studies. In addition, Knops polymorphic forms Sl (a(+)) and McC (a) have been found to contribute more towards the occurrence of cerebral malaria in malaria endemic regions compared to individuals with Sl (a(-)) / McC (a/b) genotype. This article reviews the research currently going on in this area and throws light on as yet unresolved mysteries of the role of CR1 in malarial pathogenesis.
منابع مشابه
Increased Survival in B-Cell-Deficient Mice during Experimental Cerebral Malaria Suggests a Role for Circulating Immune Complexes
The pathogenesis of malaria, an insect-borne disease that takes millions of lives every year, is still not fully understood. Complement receptor 1 (CR1) has been described as a receptor for Plasmodium falciparum, which causes cerebral malaria in humans. We investigated the role of CR1 in an experimental model of cerebral malaria. Transgenic mice expressing human CR1 (hCR1(+)) on erythrocytes we...
متن کاملC5a Enhances Dysregulated Inflammatory and Angiogenic Responses to Malaria In Vitro: Potential Implications for Placental Malaria
BACKGROUND Placental malaria (PM) is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs) and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generatio...
متن کاملComplement Receptor 1 Variants Confer Protection from Severe Malaria in Odisha, India
BACKGROUND In Plasmodium falciparum infection, complement receptor-1 (CR1) on erythrocyte's surface and ABO blood group play important roles in formation of rosettes which are presumed to be contributory in the pathogenesis of severe malaria. Although several studies have attempted to determine the association of CR1 polymorphisms with severe malaria, observations remain inconsistent. Therefore...
متن کاملReduced immune complex binding capacity and increased complement susceptibility of red cells from children with severe malaria-associated anemia.
Plasmodium falciparum malaria causes 1-2 million deaths per year. Most deaths occur as a result of complications such as severe anemia and cerebral malaria (CM) (coma). Red cells of children with severe malaria-associated anemia (SMA) have acquired deficiencies in the complement regulatory proteins complement receptor 1 (CR1, CD35) and decay accelerating factor (DAF, CD55). We investigated whet...
متن کاملPolymorphisms within Exon 9, But Not Intron 8, of the Vitamin D Receptor Gene Are Associated with Asthma
Objective(s) Deregulation of the immune system through allied factors and cytokine responses are thought to be important contributors to the pathogenesis of asthma. Vitamin D3 and its nuclear receptor appear to be factors that maybe involved in regulating immune responses during the progression of asthma. The aim of this study was to investigate the association between polymorphisms in intron ...
متن کامل